LED é a sigla em inglês para Light Emitting Diode, ou Diodo Emissor de Luz.
Características
O LED é um diodo semicondutor (junção P-N) que quando energizado emite luz visível por isso LED (Diodo Emissor de Luz). A luz não é monocromática (como em um laser), mas consiste de uma banda espectral relativamente estreita e é produzida pelas interações energéticas do elétron. O processo de emissão de luz pela aplicação de uma fonte elétrica de energia é chamado eletroluminescência. Em qualquer junção P-N polarizada diretamente, dentro da estrutura, próximo à junção, ocorrem recombinações de lacunas e elétrons. Essa recombinação exige que a energia possuída por esse elétron, que até então era livre, seja liberada, o que ocorre na forma de calor ou fótons de luz.
No silício e no germânio, que são os elementos básicos dos diodos e transistores, entre outros componentes eletrônicos, a maior parte da energia é liberada na forma de calor, sendo insignificante a luz emitida (devido a opacidade do material), e os componentes que trabalham com maior capacidade de corrente chegam a precisar de irradiadores de calor (dissipadores) para ajudar na manutenção dessa temperatura em um patamar tolerável.
Já em outros materiais, como o arseneto de gálio (GaAs) ou o fosfeto de gálio (GaP), o número de fótons de luz emitido é suficiente para constituir fontes de luz bastante eficientes.
A forma simplificada de uma junção P-N de um led demonstra seu processo de eletroluminescência. O material dopante de uma área do semicondutor contém átomos com um elétron a menos na banda de valência em relação ao material semicondutor. Na ligação, os íons desse material dopante (íons "aceitadores") removem elétrons de valência do semicondutor, deixando "lacunas" (ou buracos), portanto, o semicondutor torna-se do tipo P. Na outra área do semicondutor, o material dopante contém átomos com um elétron a mais do que o semicondutor puro em sua faixa de valência. Portanto, na ligação esse elétron fica disponível sob a forma de elétron livre, formando o semicondutor do tipo N.
Os semicondutores também podem ser do tipo compensados, isto é, possuem ambos os dopantes (P e N). Neste caso, o dopante em maior concentração determinará a que tipo pertence o semicondutor. Por exemplo, se existem mais dopantes que levariam ao P do que do tipo N, o semicondutor será do tipo P. Isso implicará, contudo, na redução da Mobilidade dos Portadores.
A Mobilidade dos Portadores é a facilidade com que cargas n e p (elétrons e buracos) atravessam a estrutura cristalina do material sem colidir com a vibração da estrutura. Quanto maior a mobilidade dos portadores, menor será a perda de energia, portanto mais baixa será a resistividade.
Na região de contato das áreas, elétrons e lacunas se recombinam, criando uma fina camada praticamente isenta de portadores de carga, a chamada barreira de potencial, onde temos apenas os íons "doadores" da região N e os íons "aceitadores" da região P, que por não apresentarem portadores de carga "isolam" as demais lacunas do material P dos outros elétrons livres do material N.
Um elétron livre ou uma lacuna só pode atravessar a barreira de potencial mediante a aplicação de energia externa (polarização direta da junção). Aqui é preciso ressaltar um fato físico do semicondutor: nesses materiais, os elétrons só podem assumir determinados níveis de energia (níveis discretizados), sendo as bandas de valência e de condução as de maiores níveis energéticos para os elétrons ocuparem.
A região compreendida entre o topo da de valência e a parte inferior da de condução é a chamada "banda proibida". Se o material semicondutor for puro, não terá elétrons nessa banda (daí ser chamada "proibida"). A recombinação entre elétrons e lacunas, que ocorre depois de vencida a barreira de potencial, pode acontecer na banda de valência ou na proibida. A possibilidade dessa recombinação ocorrer na banda proibida se deve à criação de estados eletrônicos de energia nessa área pela introdução de outras impurezas no material.
Como a recombinação ocorre mais facilmente no nível de energia mais próximo da banda de condução, pode-se escolher adequadamente as impurezas para a confecção dos leds, de modo a exibirem bandas adequadas para a emissão da cor de luz desejada (comprimento de onda específico).
Funcionamento
A luz emitida não é monocromática, mas a banda colorida é relativamente estreita. A cor, portanto, dependente do cristal e da impureza de dopagem com que o componente é fabricado. O led que utiliza o arseneto de gálio emite radiações infra-vermelhas. Dopando-se com fósforo, a emissão pode ser vermelha ou amarela, de acordo com a concentração. Utilizando-se fosfeto de gálio com dopagem de nitrogênio, a luz emitida pode ser verde ou amarela. Hoje em dia, com o uso de outros materiais, consegue-se fabricar leds que emitem luz azul, violeta e até ultra-violeta. Existem também os leds brancos, mas esses são geralmente leds emissores de cor azul, revestidos com uma camada de fósforo do mesmo tipo usado nas lâmpadas fluorescentes, que absorve a luz azul e emite a luz branca. Com o barateamento do preço, seu alto rendimento e sua grande durabilidade, esses leds tornam-se ótimos substitutos para as lâmpadas comuns, e devem substituí-las a médio ou longo prazo. Existem também os leds brancos chamados RGB (mais caros), e que são formados por três "chips", um vermelho (R de red), um verde (G de green) e um azul (B de blue). Uma variação dos leds RGB são leds com um microcontrolador integrado, o que permite que se obtenha um verdadeiro show de luzes utilizando apenas um led.
Encontra-se o aspecto físico de alguns leds e o seu símbolo elétrico.
Em geral, os leds operam com nível de tensão de 1,6 a 3,3V, sendo compatíveis com os circuitos de estado sólido. É interessante notar que a tensão é dependente do comprimento da onda emitida. Assim, os leds infravermelhos geralmente funcionam com menos de 1,5V, os vermelhos com 1,7V, os amarelos com 1,7V ou 2.0V, os verdes entre 2.0V e 3.0V, enquanto os leds azuis, violeta e ultra-violeta geralmente precisam de mais de 3V. A potência necessária está na faixa típica de 10 a 150 mW, com um tempo de vida útil de 100.000 ou mais horas.
Semáforo de LED com contador regressivo, em Poá-SP, Brasil
Como o led é um dispositivo de junção P-N, sua característica de polarização direta é semelhante à de um diodo semicondutor.
Sendo polarizado, a maioria dos fabricantes adota um "código" de identificação para a determinação externa dos terminais A (anodo) e K (catodo) dos leds.
Nos leds redondos, duas codificações são comuns: identifica-se o terminal K como sendo aquele junto a um pequeno chanfro na lateral da base circular do seu invólucro ("corpo"), ou por ser o terminal mais curto dos dois. Existem fabricantes que adotam simultaneamente as duas formas de identificação.
Nos leds retangulares, alguns fabricantes marcam o terminal K com um pequeno "alargamento" do terminal junto à base do componente, ou então deixam esse terminal mais curto.
Mas, pode acontecer do componente não trazer qualquer referência externa de identificação dos terminais. Nesse caso, se o invólucro for semi-transparente, pode-se identificar o catodo (K) como sendo o terminal que contém o eletrodo interno mais largo do que o eletrodo do outro terminal (anodo). Além de mais largo, às vezes o catodo é mais baixo do que o anodo.
Os diodos emissores de luz são empregados também na construção dos displays alfa-numéricos.
Há também leds bicolores, que são constituídos por duas junções de materiais diferentes em um mesmo invólucro, de modo que uma inversão na polarização muda a cor da luz emitida de verde para vermelho, e vice-versa. Existem ainda leds bicolores com três terminais, sendo um para acionar a junção dopada com material para produzir luz verde, outro para acionar a junção dopada com material para gerar a luz vermelha, e o terceiro comum às duas junções. O terminal comum pode corresponder à interligação dos anodos das junções (leds bicolores em anodo comum) ou dos seus catodos (leds bicolores em catodo comum).
Embora normalmente seja tratado por led bicolor (vermelho+verde), esse tipo de led é na realidade um "tricolor", já que além das duas cores independentes, cada qual gerada em uma junção, essas duas junções podem ser simultaneamente polarizadas, resultando na emissão de luz alaranjada.
Geralmente, os leds são utilizados em substituição às lâmpadas de sinalização ou lâmpadas pilotos nos painéis dos instrumentos e aparelhos diversos. Para fixação nesses painéis, é comum o uso de suportes plásticos com rosca.
Como o diodo, o LED não pode receber tensão diretamente entre seus terminais, uma vez que a corrente deve ser limitada para que a junção não seja danificada. Assim, o uso de um resistor limitador em série com o Led é comum nos circuitos que o utilizam.
Tipicamente, os LEDs grandes (de aproximadamente 5 mm de diâmetro, quando redondos) trabalham com correntes da ordem de 12 a 30 mA e os pequenos (com aproximadamente 3 mm de diâmetro) operam com a metade desse valor.
Assim:
Adotamos I1=15 mA e I2=8mA:
R1 = 12 - 2 = 10 = 680* 0,015 0,015
R2 =12 - 2 = 10 = 1K2* 0,008 0,008
Aproximamos os resultados para os valores comerciais mais próximos.
Os LEDs não suportam tensão reversa (Vr) de valor significativo, podendo-se danificá-los com apenas 5V de tensão nesse sentido. Por isso, quando alimentado por tensão C.A., o LED costuma ser acompanhado de um diodo retificador em antiparalelo (polaridade invertida em relação ao LED), com a finalidade de conduzir os semi-ciclos nos quais ele - o LED - fica no corte, limitando essa tensão reversa em torno de 0,7V (tensão direta máxima do diodo), um valor suficientemente baixo para que sua junção não se danifique. Pode-se adotar também uma ligação em série entre o diodo de proteção e o LED.
http://pt.wikipedia.org/wiki/Led
terça-feira, 7 de outubro de 2008
Assinar:
Postar comentários (Atom)
Nenhum comentário:
Postar um comentário